Un equipo internacional de astrónomos ha localizado un exoplaneta, o "supertierra", que orbita alrededor de una estrella enana roja que se encuentra a 40 años luz de la Tierra y que podría ser el mejor candidato para buscar vida.

Este mundo es un poco más grande y más masivo que la Tierra y es probable que haya conservado la mayor parte de su atmósfera. Por este motivo, junto con el hecho de que su órbita pasa por delante de su estrella, lo convierte en uno de los futuros objetivos más interesantes para desarrollar estudios atmosféricos y buscar signos de vida más allá del Sistema Solar. Los resultados aparecerán este jueves en la revista 'Nature'.

"Es el exoplaneta más interesante que he visto en la última década", afirma el autor principal del estudio, Jason Dittmann, del Centro de Astrofísica Harvard-Smithsonian, en Cambridge (Estados Unidos). "Es el objetivo perfecto para llevar a cabo una de las misiones más grandes de la ciencia: buscar evidencias de vida más allá de la Tierra", comenta.

Utilizando el instrumento HARPS, de la Organización Europea para la Investigación Astronómica (ESO, por sus siglas en inglés), instalado en La Silla, junto con otros telescopios del mundo, esta supertierra recién descubierta, denominada LHS 1140b, orbita en la zona habitable de una débil estrella enana roja llamada LHS 1140, en la constelación de Cetus (el monstruo marino).

Las enanas rojas son mucho más pequeñas y más frías que el Sol y, aunque LHS 1140b está diez veces más cerca de su estrella que la Tierra del Sol, sólo recibe alrededor de la mitad de luz de su estrella que la Tierra y se encuentra en medio de la zona habitable. Desde la Tierra, la órbita se ve casi de canto y, cuando el exoplaneta pasa delante de su estrella en cada órbita, bloquea un poco de su luz cada 25 días.

Las condiciones actuales de la enana roja son particularmente favorables, ya que LHS 1140 gira más lentamente y emite menos radiación de alta energía que otras estrellas de baja masa similares. Para la vida tal y como se concibe, un planeta debe tener agua líquida en su superficie y retener una atmósfera. En este caso, el gran tamaño del planeta implica que, hace millones de años, podría haber existido un océano de magma en su superficie. Este océano hirviente de lava podría haber proporcionado vapor a la atmósfera mucho después de que la estrella se hubiese calmado, alcanzando su brillo actual y constante, reponiendo así el agua que podría haberse perdido por la acción de la estrella en su fase más activa.

Inicialmente, el descubrimiento se hizo con la instalación MEarth, que detectó los primeros indicios: cambios característicos en la luz que se dan cuando el exoplaneta pasa delante de la estrella. Posteriormente, se hizo un seguimiento crucial con el instrumento HARPS de ESO (High Accuracy Radial velocity Planet Searcher, buscador de planetas de alta precisión por el método de velocidad radial), confirmando la presencia de la supertierra. HARPS también ayudó a establecer el periodo orbital y permitió deducir la masa y la densidad del exoplaneta.

Un exoplaneta de 5.000 millones de años

Los astrónomos estiman que el planeta tiene al menos 5.000 millones de años. También deducen que tiene un diámetro 1,4 veces más grande que el de la Tierra (casi 18.000 kilómetros). Pero con una masa unas siete veces mayor que la de la Tierra y, por lo tanto, una densidad mucho más alta, esto implica que, probablemente, el exoplaneta está hecho de roca con un núcleo denso de hierro.

Esta supertierra puede ser el mejor candidato hasta el momento para futuras observaciones cuyo objetivo sea estudiar y caracterizar, en caso de tenerla, la atmósfera del exoplaneta. Dos de los miembros europeos del equipo, Xavier Delfosse y Xavier Bonfils, ambos del CNRS y el IPAG, en Grenoble (Francia), consideran que para la futura caracterización de planetas en la zona habitable, el sistema LHS 1140 podría ser un objetivo "aún más importante que Proxima b o TRAPPIST-1". "¡Este ha sido un año extraordinario para el descubrimiento de exoplanetas!", celebran.

En concreto, con las observaciones que se llevarán a cabo próximamente con el Telescopio Espacial Hubble de la NASA/ESA, se podrá determinar exactamente cuánta radiación de alta energía cae sobre LHS 1140b, por lo que se podrá delimitar su capacidad para albergar vida.

En el futuro, cuando entren en funcionamiento nuevos telescopios como el ELT (Extremely Large Telescope) de ESO, es probable que se puedan hacer observaciones detalladas de las atmósferas de exoplanetas, y LHS 1140b es un candidato excepcional para este tipo de estudios.